
CST Part II Project Page 1

Chris Applegate Eternity: Durable Distributed Storage

Proforma

Chris Applegate
Corpus Christi College

Eternity: A Durable Anonymous Distributed Storage System

Part II Computer Science Tripos, 2002

Word Count: 11750 (approx)
Project Originator: Jon Crowcroft
Project Supervisor: Jon Crowcroft

Original Aims of the Project

The original aim of this project was to create a distributed data storage network
modelled on Ross Anderson’s notion of an Eternity Service. The network is designed
to stored data anonymously with built-in safeguards to preserve data for long
durations. An integral payment system included, and the network was intended to
scale well.

Work Completed

A system was produced which satisfied most of the original criteria. It could be
installed on a number of nodes easily, and would store data reliably for the required
periods. Data is encrypted and fluidly transferred around the network to increase
deniability. Mechanisms for auditing and reporting were provided so that misbehaving
nodes could be identified and reported. Some aspects such as scalability have not been
fully realised, mainly as other qualities in the network were deemed more important.

Special Difficulties

None.

Page 2 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

Declaration of Originality

I Christopher Applegate of Corpus Christi College, being a candidate for Part II of the
Computer Science Tripos, hereby declare that this dissertation and the work described
in it are my own work, unaided except as may be specified below, and that the
dissertation does not contain material that has already been used to any substantial
extent for a comparable purpose.

Signed,

Date: May 15th 2002

CST Part II Project Page 3

Chris Applegate Eternity: Durable Distributed Storage

Contents

1 INTRODUCTION .. 5

1.1 Distributed Storage Systems ... 5

1.2 Current State of the Art .. 6
1.2.1 File Storage.. 6
1.2.2 Eternity Networks... 7

2 PREPARATION.. 8

2.1 Early Design Decisions.. 8
2.1.1 Data Chunks ... 8
2.1.3 Client/Server Architecture.. 8
2.1.3 Java .. 8

2.2 Requirements Analysis ... 9

2.2 Satisfying Requirements ... 9
2.2.1 Reliability.. 9
2.2.2 Redundancy...10
2.2.3 Fair Payment ...10
2.2.4 Anonymity ...11
2.2.5 Scalability..11

2.3 Miscellaneous Design Decisions... 12
2.3.1 Algorithms and Data Structures Used..12
2.3.2 Software Libraries..13

3 IMPLEMENTATION.. 14

3.1 The EternityObject ... 14
3.1.1 EternityHello...14
3.1.2 EternityPeer ..14
3.1.3 EternityChunk ..14
3.1.4 EternityLocator ..15
3.1.5 EternityPartnerUpdate ...15

3.2 The DigitalCoin ... 15

3.3 The EternityException.. 15

3.4 The EternityServer ... 15
3.4.1 Joining the network...16
3.4.2 Receiving uploads and downloads..16
3.4.3 Swapping chunks ..16
3.4.4 Auditing chunks..17
3.4.5 Measuring Reliability..18

Page 4 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

3.4.6 Making Complaints ..18

3.5 The EternityClient .. 19
3.5.1 Uploading...19
3.5.2 Downloading...20

4 EVALUATION.. 21

4.1 Models and Plans ... 21
4.1.1 Engineering Model ...21
4.1.2 Test Plan ..21

4.2 Implementation... 22
4.2.1 Network Protocols ...22
4.2.2 File splitting and recombining..22
4.2.3 Uploading and Downloading ...22
4.2.4 Perfect Network Simulation..23
4.2.5 Imperfect Network Simulation...26
4.2.6 Malicious behaviour...28
4.2.8 Miscellaneous attacks..31

5 CONCLUSIONS... 33

5.1 Further Development... 33
5.1.1 Time..33
5.1.2 Server-to-server anonymity ..33
5.1.3 Scalability & Network Conditions..33
5.1.4 Misbehaviour...34

5.2 Final Conclusions... 34

BIBLIOGRAPHY ... 36

APPENDIX A: RABIN’S INFORMATION DISPERSAL ALGORITHM.... 37

APPENDIX B: TEST NETWORK INFORMATION 38

APPENDIX C: SAMPLE SOURCE CODE.. 39

APPENDIX D: PACKAGE AND CLASSES ... 41

CST Part II Project Page 5

Chris Applegate Eternity: Durable Distributed Storage

1 Introduction

1.1 Distributed Storage Systems

The field of Distributed Systems has become one of the biggest research areas in
modern Computer Science. The explosion of domestic computer purchasing and
usage, and the dawn of the Online Age have meant that networked systems are now
accessible by millions of users.

Storage is one of the most ideal applications, and they are already part of modern life.
Today, millions use peer-to-peer Distributed Storage Networks (DSN) such as
Gnutella, KaZaA and AudioGalaxy to share music, and increasingly other forms of
data such as source code, programs, and video.

However, while a lot of research into distributed storage concentrates on availability,
comparatively little has been done in durability and persistence. Yet persistence is a
desirable quality. While some data, such as digital copies of popular songs are
guaranteed persistency through their popularity, there is no fixed framework that
guarantees obscure material will be capably survived. If an obscure Medieval French
document like the Domesday Book were published on an existing P2P network,
would it be as available as the latest MP3s? Is there any guarantee that it would be
available in five years’ time, or even six months’ time?

Equally important is material of a sensitive nature - whether it’s a political manifesto
or the recipe for Coca Cola. Node owners can exercise a right to select what they want
and do not want, whether by personal choice or due to pressure from external agencies
such as governments. Furthermore, if any server does knowingly hold controversial
material, then it becomes a target for any powerful organisation or individual to
attack, either physically (destruction or damage to server) or legally (through
injunctions, prosecutions and the like).

Ross Anderson has given a high-level specification of an ‘Eternity Service’ [1] that
would offer guaranteed storage to any digital material whatsoever. Data storage is
offered by a number of servers distributed worldwide, with no point of centralisation.
Data is immutable - once a client uploads a file, he cannot delete it, not even under
coercion, until that data expires. Data is also encrypted so a server owner cannot know
what data it is storing, and no outside agency can tell which server hosts a particular
piece of data. To act as an incentive to servers to keep data and act responsibly,
Anderson outlines a payment system. This also offsets the risk of attack a server
owner undergoes.

This project aimed to take Anderson’s specification and create a workable
implementation.

Page 6 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

1.2 Current State of the Art

1.2.1 File Storage

File storage is one of the most ideal uses of a distributed application, and so not
surprisingly, there are a number of example applications in use today. This
summarises some of the best-known and most relevant examples to Eternity:

Gnutella [2] - One of the most well known networks, the simple Gnutella P2P
protocol has gained widespread use, especially for sharing MP3 music files. Gnutella
has little in the way of anonymity mechanisms - data is unencrypted on servers, and
transfers are openly conducted. In addition, there is no guarantee data will be
persistently stored. The infrastructure can also tend to become centralised and
hierarchical, and the methods of network discovery and broadcasting are naive,
leading to scalability problems.

Gnutella’s ease of use and simple protocol, however, offset its flaws, its mass
acceptance works as a substitute for the hard guarantees of other more complicated
mechanisms - with millions of servers online, data durability is likely as there will, be
a copy of the required file amongst those millions.

Freenet [3] - Freenet operates closely to the same principles as Eternity should - it
possesses attributes such as publisher anonymity, deniability and decentralisation.
Data being uploaded and downloaded is transferred via a series of inter-node hops
before arriving at its final destination, to make traffic analysis harder.

There are some differences between Freenet and an Eternity network, however.
Freenet locates files using data hashes to identify them, and files are stored on a server
whose ID corresponds the most closely to that hash. This means that if a file’s hash is
known, its location is likely to be on the server with the closest corresponding ID, and
so anyone wishing to destroy that file can attack that server.

Freenet also allows files to be updated by clients, which means someone who uploads
to the network can destroy the copy of the file later, so the document owner
(especially if they have been forcefully coerced) can later delete it. Freenet also
contains no mechanism for payment, though the architecture does not preclude such a
system being set up on top of it.

Free Haven [4] - Free Haven is perhaps the closest current design to an Eternity
Network. It takes on board ideas such as splitting files into equal sized shares, which
are dispersed over the network - this provides a harder target to aim for, and makes
traffic analysis harder. Shares are traded across the network, providing fluidity and
making data harder to track. Shares also provide a redundancy mechanism - if some
shares of a file are deleted or a server destroyed, then the other shares can still be used
to fully reconstruct the file.

Free Haven does not consider remuneration for servers, but apart from that retains
many of the properties an Eternity Network needs. Currently the project remains at
the design stage.

CST Part II Project Page 7

Chris Applegate Eternity: Durable Distributed Storage

Publius [5] - Publius also employs a splitting principle, but different to that of Free
Haven. Publius relies on generating a key, encrypting the file with it, and splitting that
key amongst a number of servers - each server receiving a copy of the file and one
piece of the key. To retrieve a document, a client retrieves multiple copies of the file,
each with a piece of the key, reconstructs the key and decrypts the file. As no one
server can decrypt the file on its own, this provides some publisher anonymity.

Publius does not provide many of the guarantees expected of an Eternity Network,
however. There is no mechanism for detecting corrupt key shares or files - so
malicious servers can publish garbage. And like all the above systems, there is no
facility for payment.

Mojo Nation [6] - Mojo Nation, unlike most other DSNs, incorporates digital cash
and payment. A user splits files into pieces, uploads them to storage servers (paying
that server), and storing the hashes of those files. These hashes are stored by a content
tracker. The location of pieces is known by a metatracker. To download, a user
consults a content tracker with the filename, and receives the corresponding hashes,
with which he then asks the metatracker to tell him who stores these pieces.

Servers trade with each other using a currency known as ‘Mojo’ paying each other in
Mojo for using each other’s resources, and use a credibility system to ensure that
malicious behaviour can be shut out. Mojo Nation is not intended for anonymity or
durability (servers can drop unpopular files for more popular ones), nor is it a
decentralised P2P system, but it still works as an example of encouraging availability
and efficiency through payment.

1.2.2 Eternity Networks

At the time of writing, there are no full implementations of an Eternity Network. A
system proposed by Adam Back called Eternity Usenet [7] uses the Usenet newsgroup
infrastructure as a basis of storing files. This publishes documents onto Usenet (using
the newsgroup alt.anonymous.messages) and uses a special webserver to
convert HTTP requests for Eternity documents into NNTP request from Usenet.

This is a clever use of an existing distributed storage network, and provides an easy-
to-use interface for users. However, there are still limitations - like Gnutella, it relies
there being on a large number of servers to guarantee reliability, rather than making
guarantees that servers are individually reliable. Also, the standard Usenet rules on
propagation and expiration apply, so the network is not strictly ‘Eternal’, as server
owners operate under their own content policy.

Page 8 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

2 Preparation

I spent the first six weeks of the project conducting research and discussing the
project with my supervisor. I thoroughly read Anderson’s Eternity paper [1], and
storage networks such as those in 1.2.1 (and others) were discussed. I conducted
research into other areas of computer science, including cryptography, matrix
arithmetic and some basic economics.

2.1 Early Design Decisions

A period of design was conducted after the initial research, and a number of pre-
implementation design decisions could be made.

2.1.1 Data Chunks

Many of the researched systems split files into equal-sized pieces. This confers a
number of benefits on the system. First of all, it is no longer possible to use the file
size as an indicator as to what that file might be - all data traded is now contained in
equal-size pieces, or as they are called in this implementation, chunks.

Splitting also increases efficiency - we no longer have to have multiple copies of the
same file - we can just distribute different chunks to different servers. Redundancy
can also be added in - by using an algorithm such as Rabin’s Information Dispersal
Algorithm (IDA) (see 2.2.2).

Chunks must have some identifier attached to them in order for a client to be able to
download them. Rather than have user-chosen names for chunks (which may lead to
collisions), a hash is taken of the chunk data and used. This also makes other
processes such as for auditing (See 2.2.1) easier.

2.1.3 Client/Server Architecture

Many P2P storage networks rely on a client-is-the-server principle - i.e. Clients also
act as servers. I chose not to follow this principle, instead opting for a hybrid
architecture - a network of multiple peer servers, with separate clients to upload and
download. The main reason was that of payment - unlike other networks, Eternity
involves payment, so there is a clear customer/provider relationship, and it is
necessary to keep that distinction. As Eternity is designed to host sensitive or
controversial material, those who might wish to upload such material (e.g. political
dissenters in oppressive regimes) might not be willing to risk uploading it if it also
meant acting as a server and undergoing the risks that it would entail.

2.1.3 Java

From the outset Java was the ideal candidate to program the project with. Java has a
large API, and is especially proficient with its wide-ranging networking capabilities.
Its platform-independence is also an advantage, meaning it can be used over a wide
variety of platforms with no additional work needed, and thus increasing potential
network coverage.

CST Part II Project Page 9

Chris Applegate Eternity: Durable Distributed Storage

2.2 Requirements Analysis

Following this research, I was able to break down the requirements for an Eternity
Network under several headings:

• Reliability - Data must persist on the network. Servers cannot choose which
data they can and cannot store - they must store whatever valid data they have.
Mechanisms must exist to check they have the data that they have promised to
store.

• Redundancy - A file stored on the network must be retrievable, even if the
network suffers attack - either by a server being taken offline, or by a server
maliciously destroying data.

• Fair Payment - Servers must be fairly compensated for storing the data, and
this must be structured so that the servers that offer more space and store more
reliably receive more money.

• Anonymity - Publisher anonymity is required - so that it cannot be discerned
from a stored file who created or uploaded it. Server anonymity is also
required - so that it cannot be discerned which server is holding which piece of
data.

• Scalability - As the network is intended to be a large-scale global distributed
system, the design must scale without risking server traffic overload.

2.2 Satisfying Requirements

With these requirements noted, I could make some further design decisions.

2.2.1 Reliability

Eternity must include well-defined mechanisms to ensure data is kept reliably -
relying on the data existing because of the size of the network like Gnutella or
Eternity Usenet offers no guaranteed security. All servers are designed to take any
valid data (files are encrypted before uploading by the client, so no server can
determine what data it is keeping.

Servers should also be auditable. This is where one of the major problems
implementing an Eternity network comes in. Ideally an Eternity Network should be
one of zero knowledge - no one other than the server owner knows the identity of the
data that server is holding. However, if this principle remains in place, then there is no
way of making sure that a server is reliable and actually possessing the data it has
been given, as no other server knows what data it is supposed to host.

So I took a compromise and implemented a ‘partner’ scheme similar to that of Free
Haven’s. A chunk on server P has a partner, hosted on a server Q. P can challenge Q
(and vice-versa) to prove it has that data, by demanding Q send it a copy of the data. P
can check the hash of that data to prove it is the data requested and Q has not
maliciously tampered with it. Q has previously signed that data so that P cannot
falsely claim that Q possesses the data when it does not. This breaks zero-knowledge
but only adds one extra entity while providing plausible security.

Page 10 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

2.2.2 Redundancy

I had already taken the decision to break files into chunk. One of the benefits of this is
the ability to use redundancy methods such as Rabin’s Information Dispersal
Algorithm (IDA). The IDA takes a file, and by multiplying specially constructed
matrices, create a set of n chunks, with any m (where m ≤ n) chunks randomly
selected from that set are required to reproduce that file. Such a defence means that
servers can steal data or be removed from the network, and the file can still be
resurrected, as long as m distinct chunks are available across all servers.

There are other algorithms out there that also do this, such as Shamir’s secret-sharing
algorithm, but Rabin’s is more efficient in space terms (Shamir’s scheme produces
chunks that are the same size as the original file).

More information on Rabin’s IDA is provided in Appendix A.

Furthermore, to provide a ‘moving target’, I decided to swap chunks of data around
the network randomly. This means that even the location of a chunk is never known
for definite, even if the server that the chunk was initially uploaded to was known.

2.2.3 Fair Payment

This is one of the hardest problems to deal with. Most payment systems rely on a
trusted third party or some other centralised payment facility, but this would become a
vulnerable point of attack in a real-world system.

Initially, I proposed that payment be made at the same time as the data upload.
Distribution was a major issue here. Who decides to whom the money should be
distributed? If I allowed just a single server to do so, then the system is instantly prone
to fraud. So I thought of distributing payment amongst many servers at once.

But there still has to be some incentive to keep the data, so I decided to delay payment
until the data had expired - using digital coins with an expiry date, which makes them
act more like post-dated cheques. But this still doesn’t fully address incentives - even
by delaying payment, what incentive is there for them to store the data and carry on
behaving well, now that they are guaranteed money? There could be some sort of
client authentication process at the expiration date, but what if the client is absent
when the data expires? And what if the client has uploaded ‘fake’ or corrupt coins?

The solution I finally adopted is a simple one in theory, if harder in practice. Since a
digital coin is just data, then it can be attached to the file data as well. The partner
system can be used to guarantee integrity, by taking a hash of the data and coin and
getting the owner of the chunk’s partner to check and sign the hash.

This brings about an implementation of a ‘data equals money’ philosophy, creating an
extra safeguard on the integrity of the network. Server owners now have a
responsibility to maintain data integrity on the network - if they don’t take care, then
someone else is taking their money.

CST Part II Project Page 11

Chris Applegate Eternity: Durable Distributed Storage

As well as acting as an incentive, the digital money system is also inherently fair - the
more available and reliable a server is, the more data it can expect to be uploaded, and
the more money it will receive.

2.2.4 Anonymity

The Free Haven paper [4] outlines various forms of anonymity. Two of the most
important are Server Anonymity: Given a file, an adversary cannot tell what server it
is stored on; and Document Anonymity: Given a server, an adversary cannot tell what
files it stores.

These are important qualities, and eternity’s design takes both of these into account -
documents are encrypted with a secret key before uploading so servers cannot know
what they are taking. All inter-server communications are encrypted and signed using
a public-key system, so eavesdroppers cannot detect what data is being transported.
This, of course, trusts that keys will not be compromised - no cryptographic system in
the world is safe if keys are carelessly managed.

2.2.5 Scalability

Initially, the project proposal included a requirement to include guarantees that the
network would be scalable.

One of the most common methods in P2P systems to save bandwidth is to use
intelligent network routing. This takes advantage of the fact that many servers are
often close together. If server A wants to send a message to servers B, C and D, and
they are all on the same LAN, then A can just send a message to B, and B will
forward it on to C and D, requiring just one message to the LAN rather than three.

However, Eternity’s principles make this harder. As public key cryptography is being
used for communications, the separate messages sent to B, C and D are now different,
so no saving is made. Furthermore, in a system such as Eternity, where this a degree
of mutual mistrust between servers (at least, by default), then A may become reluctant
to send messages to C and D through B for fear of eavesdropping, tampering, or man-
in-the-middle attacks.

I decided to take a step back on this matter and take a more broad view, as although
scalability is considered a paramount quality in many distributed storage networks,
Eternity is different from them in a number of ways.

Given the nature of Eternity, with servers separate from clients, and putting
themselves under some risk, the number of servers on the network is going to be low
compared to the scale of other distributed networks. In fact, in many networks where
clients also act as servers, the number of nodes hosting data is minimal (On Gnutella,
for example, 1% of the network hosted over 50% of the files).

In addition, the likely technical capability of such a machine is going to be high, as
servers are essentially going to be businesses. Businesses will not want to rely on 56k
modems as their connection to the Internet - servers are likely to have high-speed
connections which will cope with higher bandwidth demands.

Page 12 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

So scalability is not as pressing an issue as originally outlined. Despite this, it is
obviously desirable to save bandwidth and runtime wherever possible. I designed the
servers to operate so that regardless of the number of nodes on the network, their
output from standard operation (i.e. runtime - swapping and auditing of data) would
be constant. This means an O(n) amount of data being traded on the network during
standard operation, which scales well.

Unscalable aspects of the network include joining and broadcasting, which are of
O(n2) complexity. I initially put forward the idea that such broadcasts are only made
by a node when first joining the network and that it is assumed it is online from then
on. However, as the network ages and more and more nodes leave permanently, then
this leads to more and more failed connections, which makes it just as wasteful as the
occasional broadcast to indicate when servers are logging on and off - which should
not be that often, as servers are foreseen to be semi-business ventures and will be
online for long sustained periods.

2.3 Miscellaneous Design Decisions

Before starting actual coding, I was able to make some more implementation-oriented
decisions, such as what software libraries to use.

2.3.1 Algorithms and Data Structures Used

Encryption is provided by the Java framework, using 1024-bit RSA encryption for
key exchange and signature. I initially used DSA keys for signature but found that
RSA performed faster, especially for signature checking (The difference can be as
much as 40 times according to [6]), which is what the majority of public key
operations were. The estimated time for breaking a 1024-bit key is 3 x 1011 MIPS
Years according to [6].

Servers themselves use 168-bit Triple-DES three-key encryption for storing data.
Triple-DES is also used by clients to encrypt files before uploading to the network. To
crack a key, half the keyspace (2167) has to be searched, so on average, which will take
5.9 x 1036 MIPS years, assuming a new test key can be generated, tried and tested per
instruction. SSL Communications use RC4, which has a 128-bit key, and would take
5.4 x 1024 MIPS years to crack under the same conditions.

Hashing is done using the MD5 hash algorithm. The hash produced is 128 bits long.
A birthday attack (264 trials) will take an average of 5.8 x 105 MIPS Years to find a
string of data that creates a known hash, assuming a new test string can be generated
and hashed per instruction.

I consider these figures safe enough to use in Eternity, the levels of encryption being
well above levels that can be cracked with distributed systems. The implementation is
fairly open-ended

Most of the data structures passed around the network used are of my own design,
each message and piece of data in the network being written from scratch. These
heavily use the standard Java primitives and arrays, as well as structures in the

CST Part II Project Page 13

Chris Applegate Eternity: Durable Distributed Storage

java.util package, such as Vector (a variable-size array implementation) and
Hashtable.

2.3.2 Software Libraries

Java provides a framework for most of the algorithms used here, and most of the
libraries used were directly from the Java API.

I wrote the Information Dispersal Algorithm code based on Rabin’s paper [11], but it
relies on matrix multiplication. I originally used the NIST Matrix library [7], which
provides a framework for the representation of matrices and provides fast methods for
inversion. That library did not provide any modular arithmetic functions, so I
modified and re-compiled the source code to provide such functions, but the NIST
work was still an invaluable foundation for my work.

The Java libraries do not fully support some cryptographic processes thanks to US
export licences. Therefore I use the freely available Cryptix [8] free library for some
functions such as RSA encryption. However, where possible, to make future
expansion easier, I use the standard Java security libraries.

Later on I adapted the X.509 Certification system into the network, thus making it
compatible with modern authentication and online commerce models. Java provides
no support for direct X.509 Certificate production, so I used a free evaluation library
of X.509 software from Wedgetail [9]

Page 14 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

3 Implementation

The Eternity Network runs as a set of EternityServer RMI (Remote Method
Invocation) objects. Each of these sends an EternityObject over secure
communications channels whenever it wishes to send a message to another server.
EternityExceptions are passed if an error occurs. EternityClients connect to the
network to upload and download files.

3.1 The EternityObject

This is an abstract object, and forms the basis of every message transacted between
servers and clients. Although servers communicate many different types of message,
each message has a unique ID (to prevent replay attacks) and identifiers marking the
sender and receiver (To prevent man-in-the-middle and masquerading attacks). The
EternityObject acts as a simple parent class to all the different objects used, and
allows a generic object handling method to handle all incoming communications. It
also implements Java’s Serializable interface, making all subclasses convertible
into bytestreams, which means they can be signed and encrypted, which is an essential
part of the network’s operation.

The most important objects are detailed below; most of the rest are mentioned in other
parts of this chapter.

3.1.1 EternityHello

Used by servers for joining and leaving the network an EternityHello is just a simple
ID/sender combination, with a random nonce as the message ID. A server operating
correctly should decode the EternityHello and send another EternityHello back with
the nonce + 1.

3.1.2 EternityPeer

This object describes an EternityServer node, and is in effect its ‘calling card’. It
includes its ID number, public certificate and IP address. It can be used by servers to
announce themselves to the network, or can be published online for clients so that
they know what servers they can upload to.

3.1.3 EternityChunk

This contains the chunk and digital coin (see 3.2) and is what is traded around the
network between servers. It contains the data, coin and two hashes (one of both coin
and data, the other of just the data) for identification and verification. There is a
similar object, the EternityDataChunk, which just contains the data and its hash with
no coin, and is used for sending to clients when they request a file.

EternityChunks also contain details of a chunk’s partner - another chunk somewhere
on the network. The hash of the partner, the network ID of the server hosting that
partner, and a signature from that partner certifying it does host that chunk, to prevent
other servers from claiming that someone else hosts a chunk.

CST Part II Project Page 15

Chris Applegate Eternity: Durable Distributed Storage

3.1.4 EternityLocator

This object contains all the information needed to download a file. It contains all the
hashes of chunk data that form part of the file, plus a hash of the entire file, so that the
final file can be checked for integrity. It can also optionally include the decryption key
for the file, although public publishing of this is dangerous, as it destroys the server
anonymity protection discussed earlier. EternityLocators can be saved as files and
circulated by users wishing to share files.

3.1.5 EternityPartnerUpdate

This is sent whenever a chunk moves, and it needs to inform its partner that it has
moved. The update contains the chunk’s name, it’s new host’s name and a timestamp,
all signed by the new host. The update is sent by the old host to guarantee that the
partner is notified. The update is also used to reply back to mistaken audits about a
chunk that has moved to another node.

3.2 The DigitalCoin

Although some efforts have been made, most notably by David Chaum[10] on
creating digital coins, the methods so far often fall short of a fully functional digital
replacement for real money. I deemed implementing a proper digital coin to be
outside the scope of this project, and so a simple implementation has been used - a
DigitalCoin object merely consists of a value and maturation date, after which that
coin can be spent. The project assumes some sort of bank (or better still, a distributed
network of banks) will exist to honour the coins once they mature.

3.3 The EternityException

An EternityException is an extension of the standard Java exception, and is thrown
whenever an Eternity process meets an error. This can include such things as bad data
being transmitted, signatures not being correct, communications initiated by an
unknown server and so forth. Exceptions are thrown both internally, and across the
network from one server to another. Such network Exceptions are signed and also
record the number of the transaction that caused them to be thrown.

3.4 The EternityServer

This module acts as the server-running program. It utilises the Java Remote Method
Invocation (RMI) model, which means that a server can be instantiated as an object by
other servers, and so by executing that object’s methods, they can perform such
actions as swapping, auditing and complaining to each other.

Eternity Servers listen for connections, whether from other servers or clients. They
use encryption and digital signatures to maintain integrity.

Initially, communications were on unencrypted channels, with every message signed
and then encrypted into a bytestream. This bytestream is then transmitted over the
network and passed as an argument to the appropriate object method.

Page 16 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

However, this has disadvantages - although the data being transmitted is encrypted,
the overlying RMI headers are not - an eavesdropper can tell what type of transaction
is being made, and thus can make detailed traffic analysis. In addition, using high-
strength RSA encryption for communications is very slow, so slow that any server
receiving many requests could suffer major performance problems, thus making it an
easy target for Denial of Service attacks.

So I switched to using the SSL (Secure Sockets Layer) model of encryption, with
RSA used for just key exchange encryption method, and a symmetric stream cipher
(RC4) being used for actual transmissions, which is much faster. The optional digital
signature part of SSL was not used, instead signing and verification was done at the
application level, with Java SignedObjects were passed along the encrypted channel.
This means that the server applications can easily extract and store the signed data and
use them for informing other servers.

Servers’ operations can be split into several distinct areas, all of which are explained
in further detail below.

3.4.1 Joining the network

A new network node has to first find other nodes. With no central server, a server
cannot ‘log in’ as such. Instead the system is designed so that when a user downloads
the EternityServer software, it will also download some EternityPeer files and retrieve
information about other available nodes from that peer. It can then contact one peer,
an ‘introducer’, which may verify the newcomers’ identity, and then sign its public
key. This new server can now freely contact all the other servers on the network
(provided by the introducer) with an EternityJoin object, and be accepted as a trusted
member of the network.

A server joining the network will contact the peer(s) it knows and invoke the
sayHello() method on each. This sends an EternityHello object to its peer, which then
should reply a signed encrypted reply of the EternityHello with its nonce/ID value
incremented.

Servers keep track of all peers they have ever been in contact with, as well as a subset,
which covers peers they know that are online now.

3.4.2 Receiving uploads and downloads

Both processes are described in more detail in sections 3.5.1 and 3.5.2.

3.4.3 Swapping chunks

All servers actively do swapping at certain intervals. The interval time is random (to
prevent timed attacks), somewhere in the range of 1-3 minutes, 2 being the average.

The protocol runs as follows:

1. Server P initiates a swap, picking a random server Q and proposing a swap of
a certain value with it.

CST Part II Project Page 17

Chris Applegate Eternity: Durable Distributed Storage

2. If Q agrees, then P sends Q a chunk X1 of that value.

3. P sends Q a chunk X2 of the same or similar value back, and a signature

SQ(X1) certifying it now has X1.

4. P informs R, the server that hosts X1’s partner, of the change of X1’s host and
associated signature SQ(X1).

5. Q then replies to P, sending SP(X2), the signature certifying it now has X2.

6. Q now informs S, the server that hosts X2’s partner, of the change, along with

signature SP(X2).

Fig 3.1: Swap between hosts P and Q. These diagrams correspond to steps 2-6 of the process.

If any part of the trade is considered faulty, such as when an EternityChunk does not
match its hash, signatures are incorrect, or a chunk of insufficient value is traded, then
the failure is noted and the other server’s rating is suitably modified (see 3.4.5).

If updating the partner hosts fails (e.g. if either partner host is not online) then the
server stores the EternityPartnerUpdate containing those details in an array and waits
for the partner host to come online again.

To prevent the partner system from being compromised, neither A nor B can send a
chunk whose partner is hosted on the other, or else a server would then control both
partners at one point in time and thus be able to alter both without any outside
monitoring.

3.4.4 Auditing chunks

Auditing is also managed by the main runtime thread, and can be initiated by any
server. The process runs as follows.

1. Server A picks a random chunk X, and contacts B, the host of that chunk’s
partner, sending the hash of X as proof of reliability.

P Q

P Q

X1

SQ(X1), X2

P Q
SP(X2)

P R
SQ(X1)

S Q
SP(X2)

Page 18 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

2. B looks up Y, X’s partner and checks to see if the hash of X is correct. B sends

Y back to A.

3. A calculates the hash of Y and checks it against the hash X has recorded.

For rating purposes, the audit is logged as a trade with the value of the chunk audited,
and suitably marked as being successful or unsuccessful.

3.4.5 Measuring Reliability

Ratings are a simple but fundamental part of the Eternity network. They enable
servers to tell exactly how trustworthy other servers are, and how reliable they can
store the data.

Each server has two values recorded in the EternityPeer object that describes its
reliability - one representing the total value of all chunks sent to it, and the other the

total value of all valid chunks received from it. The rating is then simply:
Sent Total
Valid Total

The values are incremented by the suitable amounts whenever a trade of chunks is
made. When an audit is conducted, it is treated as a swap of the same value as the
chunks being audited.

Ratings are used to discriminate when trades are made. When a server makes an
active trade, it can choose not to pick any other server that has a rating beneath a
certain threshold. This threshold in testing was 0.9, but it should be as high as 0.95
(meaning effectively, that a maximum of 5% of your money is susceptible to
destruction). If it receives an offer to trade from a server it thinks is untrustworthy, it
can return an EternityException refusing to trade with it.

Audits are not so strictly regulated - being audited does not cost a server anything in
terms of data or digital coins, unlike a swap. So a server may receive audits from
another server regardless of the sender’s rating.

3.4.6 Making Complaints

A server will in two circumstances alert its peers to a misbehaving node. One is if an
audit request it makes is not satisfied, and the other is if a swap it receives is invalid in
some way - bad data, or an unsatisfactory amount of money is returned. Both
transactions involve signed messages, so proof of misdemeanour is a lot more
reliable.

To prevent bandwidth overload a complaint is not immediately made after a
misdemeanour - or else a DoS attack could be made against the network by a rapid
succession of bad transactions, resulting in a rapid number of corresponding
complaints across the network, and a snowball effect ensuing. Instead complaints (if
any) are stored when the bad transaction is made, and then transmitted at certain
intervals of time. There is a limit on the number that can be made (10 in this
implmentation), to avoid overloading.

CST Part II Project Page 19

Chris Applegate Eternity: Durable Distributed Storage

3.5 The EternityClient

The EternityClient is a class that handles the conversion of files into chunks hosted on
the network, and the download and recombination of chunks. It can be run off the
command line, or through a GUI implementation.

3.5.1 Uploading

The upload process is slightly long-winded, for reasons described below. The protocol
runs as follows:

1. The client initially contacts one known server on the network, P.

2. P replies, with EternityPeer details of other online trusted servers.

3. The client contacts each of these servers requesting space.

4. Each server replies saying how much capacity it can offer.

5. If there is enough capacity on the network, then the client encrypts the file with
a secret key, and turns it into a set of chunks.

6. The client allocates chunks to servers, the number per server proportional to the
amount of free space offered, and then pairs partners up.

7. The client uploads to each the chunks allocated but with no details of partners
(which thus makes chunks initially unusable). It asks in return for signatures
certifying it hosts those chunks.

8. The client finishes the uploads by sending each server the signatures from the
servers that host the partners of that server’s chunks. The chunks are now
complete and viable.

This is illustrated in the diagram below:

(a) (b) (c)

Fig 3.2: Example of an upload from client A to servers P and Q. In this case, X1 & X2 and X3 & X4 are pairs
of partners. (a) X1 & X3 are uploaded to P, X2 and X4 to Q. (b) Signatures SP(X1), SP(X3) and SQ(X2),SQ(X4)

certifying ownership are sent back to the client. (c) The client forwards the signatures to the other host.

A

P

Q

X2,X4

X1,X3

A

P

Q
SQ(X2),SQ(X4)

SP(X1),SP(X3)

A

P

Q

SQ(X2),SQ(X4)

SP(X1),SP(X3)

Page 20 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

The client will abort if there’s not enough space on the network, if there are less than
two servers available, or if one server is allocated more than half the chunks available
- that way the integrity of the partner system is kept intact.

This process is quite time and bandwidth-consuming - the client has to make three
separate connections and queries to each server - one to get the allocation, one to
upload data and received signatures, and one to complete the upload. It also wastes
bandwidth contacting each server separately, rather than relying on intelligent
connections and multi-hop queries. But this the deliberately safe approach with many
precautions against network unreliability.

An alternative considered was to use one server as an agent, to take the entire upload
at once, and redistribute. However, this places all the digital cash at one point in the
network temporarily, even if the coins were encrypted or otherwise protected, the
agent node could just maliciously delete the money being uploaded, or it could
become a target for attackers.

There is also the question of chunk and partner allocation - a single node on the
network might not be trusted to allocate partners. The client is the most trustworthy
part of this transaction, as it is the only one that is paying money - a ‘customer is
always right’ mindset, perhaps.

3.5.2 Downloading

Downloading is a lot simpler than uploading. In this case, as it is merely copies of
data being handled with no coins and thus no threatened damage to integrity, the
process can be done through one server acting as an agent. A client sends a download
request to the agent, consisting of the chunk hashes generated and a randomly-
generated RSA public key, which it distributes to any online servers it knows about.

Each server responds to the agent with data chunk copies that match the hashes,
encrypted with the client’s public key, so the agent cannot tell which chunks are
actually contained. Random data can be added to fool traffic analysis. The agent then
forwards the data to the client, which reassembles the chunks into a file, and decrypts
them if possible.

CST Part II Project Page 21

Chris Applegate Eternity: Durable Distributed Storage

4 Evaluation

4.1 Models and Plans

4.1.1 Engineering Model

The implementation of the project can be broken down into five distinct tasks.

1. Network Protocols - Basic communications, network discovery
2. File Splitting & Recombining - Implementing the IDA
3. Uploading and Downloading - Transferring data from Client to Server
4. Perfect Network Operation - Transferring data from Server to Server
5. Imperfect Network Operation - Coping with errors and malicious behaviour

Task 1 and 2 can be independently written, but 3, 4 and 5 all depend on the preceding
tasks being completed. With this need for building on past efforts required, I adopted
an iterative/spiral model of engineering, with each stage being regarded as a prototype
for the next step. Each stage was separately tested to exhaustion before moving onto
the next, minimising the possibility bugs persisting throughout the development.

4.1.2 Test Plan

After taking into account the requirements and design, I was able to come up with a
test plan, detailing what test criteria the network should meet in order to be a
satisfactory implementation:

1. In normal operation, any uploaded files must be downloaded intact 100% of
the time.

2. Uploads and downloads must scale well with file size.
3. Nodes must audit each other correctly - i.e. for a particular chunk, the node

that chunk should be on is always audited. This means that swaps in particular
must work - the right partner needs to be informed of the change.

4. If some of a file’s chunks are lost on the network, then the file should still be
available as much as possible, as long as the proportion of servers lost is
smaller than the redundancy built in to the split chunks (i.e. smaller than

n
mn −)

5. If a server acts maliciously, then the other servers must drop it from the
network quickly.

Tests 1-3 could be made on a normal, uncorrupted network (thus stage 4 of the
implementation). Test 3 needs additional testing on an imperfect network, i.e. when
the final implementation was complete. Tests 4 and 5 also need to be done at this
time.

Page 22 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

4.2 Implementation

4.2.1 Network Protocols

The basic RMI protocol was implemented on two machines, each acting as client and
server. This was followed by the addition of SSL cryptographic and authentication
procedures so that machines could swap “Hello World” messages securely. The
EternityObject class and some of its basic descendents (such as EternityHello) were
also created, with the simple network joining protocol implemented successfully.

Some rudimentary packet sniffing software was used to make sure the machines were
genuinely transmitting encrypted data - it would not do to rely on unknown software
libraries without making sure.

4.2.2 File splitting and recombining

After I could guarantee a viable network protocol could be produced. I could start to
implement the IDA algorithm. This did not rely on using a network connection, so
this module could be coded over the Christmas holiday at home.

Writing the IDA module took more time than expected, as although the algorithm
worked on small amounts of data (up to 256 bytes), when applied to realistic file sizes
(up to 100k) problems with performances and overflow started occurring.

This was due in part to my over-reliance on existing software libraries for matrix
operations (Which IDA relies on, see Appendix A). Sun’s own simple Matrix class in
the Java API, used for 3D modelling, was slow and unsuitable for working on
matrices representing filestreams. A faster implementation from NIST [7] was used,
but this was not in modular arithmetic. Eventually I wrote my own ModularMatrix
representation, based on NIST’s source code.

Testing of IDA was done on files resident on a single machine, with no network
operation involved, to minimise any bugs appearing. First the ModularMatrix was
tested, trying to invert large and very large matrices of random byte values.

Once I was satisfied it could invert and multiply 5000x5000 matrices without error, I
implemented the system for IDA. I tested it on 20 files, ranging from 1 byte to 100k in
size, and of different types (Testing on ASCII would not be rigorous enough, as
ASCII only has a limited range of byte values, not all 255). IDA was successful in
splitting and recombining every single one.

This work took longer than expected - I had a delay of approximately two weeks in
trying to get the Matrix and ModularMatrix implementations fully working.

4.2.3 Uploading and Downloading

Once this had been achieved the network protocol and IDA modules could be
combined to produce a simple network for uploading and downloading. Client
software that took care of splitting the file and creating EternityLocator objects was
written, while servers had proper upload and download methods added.

CST Part II Project Page 23

Chris Applegate Eternity: Durable Distributed Storage

As client software is meant to be used by anyone, a simple GUI interface was built
using Java Swing. This was not too complex, just having two functions - Upload and
Download - but incorporated step-by-step guides to uploading a file for the average
user to understand.

Fig 4.1 Sample screenshots of client software in upload mode. The left hand screen is asking the user to pick a file.
The right hand screen is requesting an epsilon (n/m) value of file safety.

Thanks to the successfully tested and completed modules beforehand, this stage was
very quick to write and implement, and required little testing and bug correction.

At the end of this a semi-complete storage network was available. Servers could join
the network, and clients could upload data to the servers and download it later
successfully. With this infrastructure in place and operational, the network could be
expanded, with it being tested up to six extra nodes with no problems.

4.2.4 Perfect Network Simulation

After making sure the network had reliable data on its nodes, then the processes for
chunk auditing and swapping were added. Although the protocols had been designed
beforehand, writing the actual code for them allowed me to see deeper into them, and
gain a better appreciation into how they worked. As a result I was able to think about
attacks on the system and so refined the design to become more secure - the addition
of destination fields and timestamps in EternityObjects is one example.

Page 24 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

Fig 4.2 Server in operation, performing audits and updates in normal runtime operation

An intense period of testing followed. The auditing is simpler, and so was the first to
be implemented and tested. Afterwards, the swapping protocols were implemented,
before the two combined together.

Now it was possible to simulate proper network operation. The first test was to satisfy
requirements of file integrity. Over 500 chunks were uploaded to the network over a
period of 24 hours. The data consisted of a variety of file types (e.g. ASCII text, MS
Office, GIF, JPEG) and varied in size from 2k to 80k. The network was left to run on
its own for 48 hours, and then the data was re-downloaded.

As a hash of the entire file is taken before uploading and stored, it is easy for clients to
check integrity. Every file re-downloaded returned a correct hash, so the file
correctness rate is 100%, which means Test 1 is satisfied.

With the large amount of widely shared data on the network, this also provided an
opportunity to fully test the swapping and auditing methods (Test 3) to see if they
worked under proper network conditions. Servers kept logs of any errors that
occurred. After inspecting the logs, I found no such errors. The protocols had worked
100% with ‘proper data’ as well, which means that the test passes in perfect operation.

Next we can measure upload and download performance. It is obviously important to
have a network that is not only easy to use but also relatively fast and convenient for
clients.

The main factor in speed of downloading/uploading is the number of chunks - the
more data to be transferred, encrypted, signed and processed, the more time it will
take. Transferring is obviously linear, an O(n) time process, where n is the number of
chunks. Encrypting and signing (which is based on hashing) are also O(n) processes.

Processing involves matrix inversion and multiplication, which depends on the
product of the different matrix dimensions, which are (From Appendix A) n, m and b,

CST Part II Project Page 25

Chris Applegate Eternity: Durable Distributed Storage

the block size. m and n are linearly related, and b is constant, so this just becomes
O(n2).

To test this, I uploaded various file sizes, from 10 to 100 chunks to the network of
servers, and used the client to time how long uploads and downloads would take. Five
sample downloads and upload were taken.

File size 10 20 40 60 80 100
Upload 4.46 6.42 10.80 16.62 22.02 29.56
Download 2.58 3.95 5.28 8.57 11.81 16.31

All times in seconds.

These results produce the following graph:

0

5

10

15

20

25

30

0 20 40 60 80 100

Number of Chunks

T
im

e
(s

)

Upload

Download

Fig 4.2: Upload and Download time depending on file size

As can be seen, the rate of change in both graphs increases, suggests a correspondence
with the O(n2) prediction, however, this rate of change is quite slight, suggesting that
even large files don’t have a large overhead in reassembly - the linear costs of
connecting, signing and encrypting appear to dominate.

No tests were done comparing upload time with network size. Firstly because I don’t
believe that there is much difference in performance - from my own experience of
working the network, connection times are very quick and so whether 2 or 8
connections are needed will probably not have much effect. In addition, the nodes all
had very different processors and hard drives, and some of the more demanding
processes, such as encrypting and signing data, varied wildly from machine to
machine, meaning a fair measure of performance purely based on the number of
machines was impossible.

What must borne in mind from these successful results is that they only simulated
‘perfect’ network behaviour and did not deal with real-life problems, such as
disconnections, node destruction and malicious behaviour.

Page 26 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

4.2.5 Imperfect Network Simulation

To complete implementation, the complaints methods and ratings systems were added
and implemented, and full network testing could begin.

First of all, a completion of Test 3 was made. On the standard network of 8, a server
would go offline for an hour, and then return to the network. It should be
automatically updated with all the information about the movements of its chunks
partners when it logs back on, and so should not make any mistaken audits to the
wrong server.

Initially this went wrong, which got very frustrating, as it would mean having to reset
all the servers on the network and getting rid of the ‘bad’ data. However, after
redesigning the methods so that mistaken audits were given the appropriate pre-saved
EternityPartnerUpdate object in reply, and the introduction of timestamps to prevent
out-of-date updates interfering, I managed to get a working implementation up.

Next I tested for Test 4, which checks for file integrity when the network undergoes
partial damage. This requires a little extra analysis. In theory, if there are n chunks
uploaded to a network of k servers, then as allocation is random, the number of
chunks on a server follows a binomial distribution, so there will be kn chunks per
server, on average. There is no better policy for allocation than random, as we cannot
have servers divulge information about what they are storing to each other.

But in a random allocation, the number of chunks can vary, as the number of chunks
is under a binomial distribution. The standard deviation σ of this distribution for a
single server is:

 −=

 −= 2

11111
kk

n
kk

nσ

This can be approximated to:
k
n as k is large enough for 2

1
k

 to be insignificant.

But there are k servers on the network, so by taking all k samples we divide the
standard deviation by k to obtain the standard deviation for the number of chunks
on each server over the entire network:

k
n

k
n

k == 2σ

The samples of the number of chunks on each server will follow a normal distribution,
with mean n/k and standard deviation kσ . An average scenario, where each server has
between 0 and kn chunks, will occur 50% of the time under this distribution. If l
servers are lost, this leads to a maximum of knl chunks being lost, so if m chunks
are needed to resurrect the file, then the file is viable as long as:

CST Part II Project Page 27

Chris Applegate Eternity: Durable Distributed Storage

m > n - knl (1)

We can also create more pessimistic scenarios. Each server has between 0 and (kn +

kσ) - i.e. one standard deviation more than the mean - 80% of the time. The file stays
intact as long as:

k
lnnnm)(+−> (2)

Which will hold 80% of the time.

A ‘very worst’ case scenario is where each server has between 0 and (kn + 2 kσ)
chunks. This will occur 95% of the time, and means m has to satisfy the condition:

k
lnnnm)2(+−> (3)

Which will hold 95% of the time. Thanks to the random nature of the network there is
no guarantee of 100% availability, although in (3) we get quite close.

By inputting the appropriate variables into equations (1), (2) and (3) and rearranging,
the values of n for different values of fixed m required were computed as follows:

m 50% 80% 95%
10 14 15 16
20 27 29 31
40 54 56 59

Table 4.1
To test this, I set up a network of 8 nodes, and uploaded three sample files, of m size
10, 20 and 40, each with the three corresponding n sizes from the table above. After a
suitable long period of network operation (24 hours in this case). I randomly
disconnected 2 of the nodes to simulate attack, and attempted to re-download the nine
files. These were repeated ten times at 12-hour intervals, and the results given below.

m Successful Attempts out of 10
10 7 8 9
20 6 8 10
40 7 8 10

Table 4.2

After accounting for error of ± 0.5, the failure rate is roughly as expected, in fact
actually slightly better for the 50% model. This may be due to the approximations - as
the figures in Table 4.2 have to be rounded up to the nearest whole value, they are
‘better’ than the actual floating-point figure to achieve their respective percentages.

Random error may have also played a part. However, more extensive testing was not
possible, because of the long allotted time between samples. Alternatively, my model

Page 28 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

could be flawed and too pessimistic, but being pessimistic is not a crime when
concerned with an inherently paranoid network such as this.

This analysis does give one useful conclusion - and that is that files are more secure
when they are split up into many chunks rather than few. For example, to guarantee
95% coverage, if a file is 10 chunks in original size, then you need an n of 16 (a
factor of 1.6). A file of 40 chunks in size needs an n of only 59, (a factor of 1.475).

Small files, thus, should either be padded out (which is an expensive waste of data), or
chunk sizes be made variable so that there are many chunks available for small files.
A minimum chunk size of 512 bytes means 10k file is now 20 chunks in size rather
than 10. This relatively uncomplicated feature has been easily incorporated into the
client design.

The most pleasing result that only a few extra chunks are needed to be created for a
file to go from 50% availability to 95% availability - approximately a 10% increase in
the above tests - which is good for both clients and servers

This means that there is only an approximately 50% guarantee that a file of size m

split into n chunks will withstand a loss of a proportion of the network
n

mn − in size.

But an increase of n to n10
11 will guarantee 95% availability, which is good enough

to satisfy Test 4.

4.2.6 Malicious behaviour

4.2.7.1 Data Destruction

To check for Test 5 - the network’s tolerance to malicious behaviour - I constructed a
server that would automatically destroy one-fifth of any chunks uploaded to it. This
joined up to form part of a network of eight, and the number of audits made by each
node before rejection was recorded. This was repeated five times, each with a ‘brand
new’ malicious server joining.

The nature of the auditing system would mean that one-fifth of audits will fail. So as
audit after audit is made, the rating will be suitably altered until the average rating
falls below 0.9. To avoid teething troubles when a node first joins (It may not have
any chunks to start off with) a minimum of five trades with it are needed before its
rating is taken into consideration.

How can we calculate this? The process can be mapped as a stochastic problem like
the Gambler’s Ruin. We initially start at position 0 on a line. For every successful
audit we mover forward one place. For every failed audit we move backward nine
places. The ratio between successes and failures has to be at least 9:1 for the server to
be deemed trustworthy, if this ratio is any smaller then we fall backward more places
than forward - i.e. if the position becomes 0 or less.

A simple program was made to simulate this behaviour to reach a numerical solution -
the average result over millions of trials is approximately 5.93, which means servers

CST Part II Project Page 29

Chris Applegate Eternity: Durable Distributed Storage

should take an average 6 audits (and thus, 6 swaps, assuming swaps and audits are at
the same rate) before realising the malicious server is no good.

Initial tests, however, showed that servers were not noticing such intransient
behaviour at all, and would continually keep a rating of approximately 0.94 or more
for that server. The reason being that the runtime method also makes and receives
swaps. For every audit A makes to B, on average, A will send a swap to and receive a
swap from B. If both of these swaps are valid, then these will add to B’s rating. These
two extra steps make the above problem into one of three steps forward and seven
steps backward, which will very rarely (if ever) return to zero.

In fact this could lead to an attack, whereby B could continually bombard A with
valid swaps, which it cannot refuse, to mask its misbehaviour when it came to invalid
audits. To combat this problem, I doubled the penalty for a bad audit, and extended
the swap feature so that after every incoming swap from B, A would give B another
audit.

These modifications to the model now mean it makes one step forward (if audit is
successful) or eighteen steps backward (if audit is not successful). There are also two
extra possible steps forward, each with a 1/(k-1) probability (simulating two possible
swaps that might occur in this round between this server and the bad one - one
initiated and one received), and a further repeat of the audit after that.

This, in the simulator (with k=8), makes the average number of swaps 6.82, which
means an average of 7 are now needed before such a server will regard a node as
being malicious.

A second set of tests on the network with such modifications meant a definite
rejection of the malicious server for all the nodes, as illustrated in the results below:

Page 30 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

 No. of swaps with bad server before cutting off
 A B C D E F G Mean

1 7 3 8 4 11 5 3 5.86
2 3 9 2 12 2 6 4 5.42
3 5 3 10 5 3 6 9 5.86
4 9 3 4 6 5 6 10 6.14
5 4 9 14 3 3 5 5 6.14

Table 4.3

The results are slightly better than the model predicted (an average number of 5.88
swaps to stop). It is noticeable that there are one or two nodes in each test that have
remarkably worse numbers than the rest. This is because as the malicious server runs
out of partners to trade with, it will focus more on the few remaining nodes that are
still willing to trade, and make plenty of swaps with them, so they will take longer for
their audits to bring down

But if we now combine in the complaints system, then we should be able to pre-empt
this. With two servers downgrading the malicious server for every bad audit, we
increase the ratio of audits to swaps, and distribute the audits more evenly across the
network. The results are as follows:

 No. of swaps with bad server before cutting off
 A B C D E F G Mean

1 4 5 2 3 3 2 3 3.14
2 2 3 3 4 1 2 3 2.57
3 2 2 2 2 3 2 2 2.14
4 1 2 1 3 3 5 3 2.57
5 2 2 1 3 2 3 2 2.14

Table 4.4

This reduces the average to 2.51, over a 50% reduction, which is a marked
improvement. This shows that the complaints facility is definitely worth having to
speed up network-wide detection of malicious behaviour.

Test 5 demanded a ‘quick’ response to malicious behaviour. 2-3 swaps is particularly
quick (It corresponds to about 30 minutes of real time), and approaches as short as
possible a time a node can know another before making a judgement on its behaviour.

4.2.7.2 Server Victimisation

However, Test 5 may not just apply to malicious behaviour to everyone on the
network. One particular form of attack is if a malicious server attacks one server with
corrupted swaps while behaving perfectly well with other members.

One server A on the network of eight was set up to swap bad data chunks when
offered good ones to another (B), while behaving perfectly normally to the others. B
would send complaints to C, D,..., H whenever it was treated badly, and would
continue to do so until B’s rating of A dropped below the threshold.

CST Part II Project Page 31

Chris Applegate Eternity: Durable Distributed Storage

However, the complaints system was only of limited use. B would typically stop
trading with A after 6 or 7 bad trades, and so the complaints didn’t continue. As the
complaints were dispersed over the entire network, their effect was quite negligible.

One modification in testing was to send all the complaints to just one server (e.g. C).
Then server C would indeed downgrade A but often not enough to take it beneath the
0.9 threshold before B stopped trading with A and stopped making complaints. This is
because A was returning enough good trades and audits to C to keep its rating up.

Raising the threshold would make it easier for C to stop talking to B, but would also
reduce the number of complaints B could make before stopping itself.

The only way to give C enough complaints about A would be for B to carry on trading
with A even after the threshold had been crossed, but B is unlikely to do this - it can
just cut its losses and ignore A forever. The self-interest aspect of a network’s
behaviour means it is unlikely to risk more data and money to alert other servers.

In conclusion, the complaints system, while good theory, is less useful in practice
when concentrated attacks on individual servers are made.

Despite this, I feel the system is good enough to pass Test 5, although alerting abuse
of individual servers to the entire network definitely needs further research.

4.2.8 Miscellaneous attacks

There are a number of other attacks possible on the system, and it was not possible to
test all of them. However, I have put some thought into how the system could be
attacked.

4.2.8.1 Denial of Service

A node could be bombarded with swaps or audits, causing it to overload and go
offline. This is a potential problem as there is some fixed overhead in each
connection.

Such a DoS attack would have to be carefully constructed - transactions are refused if
the chunk involved is invalid, and audits have to come from the proper partner host.
So it would have to come from servers who have validly worked for a period of time
until they have enough resources to attack.

The network is designed to prevent DoS attacks from snowballing - if lots of bad
transactions are made, then the complaints they generate are stored and only sent
when the next complaint send is due. Complaint traffic is kept constant within
maximum limits. The worst possible knock-on effect is when a swap occurs - as the
new hosts have to send updates to their partners. But at most only two updates have to
be sent, they are relatively small compared to chunks, and can go randomly to any
node on the network. Also this means the attacker has to use proper chunks and coins,
which means a lot of work in collecting them beforehand if it is to mount a sustained
attack.

Page 32 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

Some primitive anti-DoS attack precautions could be added at the application level
(e.g. refusing an audit/swap within ten seconds of the last one from a host), but this
would be less effective against distributed attacks from many sources. Also, this
would mean that a SSL connection would be set up regardless, which takes up a lot of
the overhead in a transaction. A better solution is to implement proper anti-DoS
measures at the network level with established anti-DoS software.

4.2.8.2 Hoarding

Servers are not required to move specific pieces of data, they could do with any. This
may mean that low-value chunks are rapidly moved around the network, while a
greedy server will hoard high-value ones.

However, this is not as bad as it seems. For the server hoarding the expensive chunk
will still be audited regularly for it, so this does not impact availability. All this does
is increase the risk the server has of having that chunk detected on it. This risk is
offset by the extra value of the chunk possesses.

4.2.8.3 Withholding Chunks From Clients

A server could well provide correct answers to all audits from its peers, but give
nothing when demanded to download, effectively cutting off the data it hosts. One
solution this would be for each server to check what chunks in a download request are
partners of its own chunks, and for it to demand the partner host to send a copy.
However, this would result in O(n2) connections being set up between servers each
time a download was requested, which would not scale very well. With more
intelligent connection this cost could be reduced, possibly.

CST Part II Project Page 33

Chris Applegate Eternity: Durable Distributed Storage

5 Conclusions

In all, I am satisfied that the network produced was an effective implementation of an
Eternity Network. The system satisfied the tests that I planned for, although my work
only scratches the surface of what could be achieved - safe distributed storage is a
complex subject matter.

5.1 Further Development

There are further areas that time and resources did not permit me to properly research,
but could be borne in mind for future development.

5.1.1 Time

The system relies on timestamps to make sure that, for example, updates are fresh.
However, there is no unified timing system on the network, and so the reliance is ad-
hoc. With the small number of network nodes in the test belonging to the same time
zone and with accurately set clocks, this problem was not really apparent, but I came
to realise that for a large network on machines with less reliable clocks, over many
time zones, discrepancies can occur, and may even become security faults - if an
attacker knows a node’s clock is set several hours slow, it can resend out-of-date
updates which will still be valid on the faulty node and change its perception of the
network.

Attempts were made to find some synchronization software using NTP (Network
Time Protocol), a system of servers worldwide that accurately return the current time .
Although this gives the network some degree of centralization and thus vulnerability
to attack, there are enough NTP servers around the world to make it secure enough.

However, no suitable Java backend applications that could integrate with Eternity
could be found, and there was not enough time to create my own NTP
implementation.

5.1.2 Server-to-server anonymity

Although all communications are encrypted, the fact that a particular IP address is an
EternityServer is not a secret. As servers are known, the owner may come under
attack for running it, regardless of whether the data it holds. The financial incentive
counters the risk involved, but it may still not be enough. Further extension of
Eternity could possibly involve steganographic methods or anonymising protocols
such as Onion routing, which could hide any evidence of Eternity’s existence in the
first place.

5.1.3 Scalability & Network Conditions.

Due to limited resources I could only test the network on a maximum of eight nodes,
all run within my college Ethernet. Although the design assumed that Eternity was
meant to be a (relatively) small-scale network, it could easily expand to a large-scale
network.

Page 34 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

If so, then more efficient network architectures would have to be implemented, and
efforts made for more efficient routing. This might mean some of the underlying
protocols would have to be altered or even dropped- RMI and SSL are point-to-point
protocols, and trying to implement them as hop-by-hop protocols would be
demanding and raise lots of questions on guarantees of security and reliability.

In addition, little testing could be done under more demanding conditions - on
computers separated across the large geographical distances, on networks with large
lag times or high packet drop rates.

5.1.4 Misbehaviour

The complaint communication between nodes is perhaps the biggest shortfall in the
system. Although it does work to speed up a server being rejected because of
malicious behaviour, it only does so if that server maliciously misbehaves to many
servers at once.

But the problem when only individual servers are the target of bad trading remains.
Rather than sending complaints to the just one server, a complaining server could
send it to many or even the entire network, but then this becomes a Denial of Service
weakness - one server’s misbehaviour could create a large amount of traffic as the
network becomes flooded with complaints.

A ‘real-world’ parallel could perhaps be drawn here - a crime with only one relatively
insignificant victim is hardly going to be as much concern to a society as one that is
perpetrated against many members, a harsh but true fact of life. However, it is still
desirable to stop as much ‘crime’ as possible on the network.

If progress was made on scalability as outline in 5.1.3, then a more
efficient/intelligent network architecture could enable broadcasts to become efficient,
meaning that such behaviour could be exposed without spamming the network.

5.2 Final Conclusions

I enjoyed working on this project, and feel I have created a useful and workable
application for distributed file storage. The network is (relatively) easy to set up and
run for a node operator, although it does demand a fairly fast processor (For the heavy
crypto workload) and a fast, persistent Internet connection for servers. If Eternity, as
Anderson outlines, becomes some sort of business venture, this should not be a
problem. The client software has an easy-to-use GUI and requires no more capability
than a normal home PC and modem.

I have learnt quite a lot in constructing this program, especially on networking and
cryptography. My research also taught me a lot about the state of the art and current
research in the field. In bringing the project from concept to reality, I’ve learnt that it
is possible to make elegant ideas come to life, but that it’s also a lot of hard work. The
biggest part of this project was thinking about managing the network when things go
wrong - when they go right it is far simpler - and I feel I’ve been taught an awful lot
about how to deal with faults and errors.

CST Part II Project Page 35

Chris Applegate Eternity: Durable Distributed Storage

I am glad I managed the foresight to allocate spare time at the end, as some of the
trickier parts of implementation (notably the IDA and the tricky swap protocol) took
more time than expected.

In retrospect I should have been more analytical when it came to design - although I
managed to get the correct requirements for the project, it wasn’t until actual coding
did I get a full grip of the algorithms and protocols involved, and thus wasn’t able to
fully think about attacks on the network. I therefore had to keep evolving the design
against each of the new attacks I came up with, at the implementation stage, which
made the work more frustrating.

Despite this, I managed to get the implementation fully working only a couple of
weeks behind schedule, and I feel I fulfilled the specification to a more than
satisfactory level. The technology and concepts I have encountered are at the cutting
edge of computer science, and I feel especially pleased that I’ve been able to
contribute to such a field in this way.

Page 36 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

Bibliography

1. Ross Anderson, The Eternity Service, 1996.
http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html

2. Gnutella
http://www.gnutella.org

3. The Free Network Project
http://freenet.sourceforge.net

4. The Free Haven Project
http://www.freehaven.net

5. Publius
http://www.publius.net

6. Bruce Schneier, Applied Cryptography, Second Edition, 1996

7. National Institute of Standards & Technology (US)
JAMA: A Java Matrix Package
http://math.nist.gov/javanumerics/jama/

8. Cryptix 3.2.0
http://www.cryptix.org/products/cryptix31/index.html

9. Java Crypto & Security Implementation
http://www.wedgetail.com/jcsi/2.2/base/index.html

10. David Chaum, Online Cash Checks, 1989
http://www.chaum.com/articles/Online_Cash_Checks.htm

11. Michael O. Rabin, Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance, 1989

CST Part II Project Page 37

Chris Applegate Eternity: Durable Distributed Storage

Appendix A: Rabin’s Information Dispersal Algorithm

Rabin’s IDA takes a file F and splits it into n pieces, such that any m pieces where m
< n can be used to reconstruct F.

First a prime P, where P > 256 is taken. For the Eternity service P = 257.

Determine a block size B (e.g. 1024 bytes), and pad the file so that | F | = mB. Fill a m
× B matrix S with the data so that each continuous block of data occupies one row.

Find a value k ≥ 1 which is the margin of error for the file - e.g. if you want the file to
be retrievable even if half the dispersed chunks are lost, then k = 2. Find integer n =
km

Create an n × m matrix A such that each row of the matrix is linearly independent of
all the others. Such a matrix can be constructed by assigning each element in A the
value:

Aij = i (j-1) mod P

Find the matrix product C = A.S mod P (i.e. standard matrix multiplication, but with
all elements mod P). This is an n x B matrix, each row representing one chunk. These
chunks can now be dispersed. Each chunk records its row number i with it, for reasons
as described below.

To resurrect, we take a collection of any m chunks and place them in an m × B matrix,
C'. Now construct a m × m matrix A', with each element assigned the value:

A'ij = ci (j-1) mod P

Where ci is the original row number for the ith row of C', which was stored earlier.

We have basically reconstructed A', the submatrix of A that when multiplied with F,
produced the submatrix C'. i.e.

C' = A'.F mod P

Which means that:

F = (A')-1.C' mod P

So we find the modular inverse of A', and perform the above equation. The modular
inverse of a matrix is just like the inverse of a matrix, but instead of dividing each
element by the determinant you multiply it by the inverse of the that element with
respect to the determinant mod P. As by definition A' only contains linearly
independent elements, then there exists as determinant, and therefore inversion is
guaranteed to have a definite result.

Page 38 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

Appendix B: Test Network Information

The test network used for this project consisted of between 2 and 8 network
computers, all located on the Corpus Christi College Ethernet. For convenience and
efficient work, the majority of work was done on a ‘mini network’ of two computers
(Both residing in my room), for initial code testing, before the network was extended
to the other 6 nodes for full-blown testing.

The nodes were all Intel machines, running Java JRE 1.4 on either Windows or Linux
environments. Each has a 10Mb/s network connection. The computers varied in speed
and capability, from a reconditioned Pentium 100 Mhz with 64Mb RAM to a Athlon
1.5Ghz with 512Mb RAM.

The client was typically run from one of my own computers, a PIII 500 with 128Mb
running Windows.

CST Part II Project Page 39

Chris Applegate Eternity: Durable Distributed Storage

Appendix C: Sample Source Code

This is the active auditing method for the server. The runtime thread calls this at
irregular but frequent intervals throughout its operation.

/* Audits other servers. It picks a random server and sends
 * a challenge to provide the data from a chunk. It then hashes
 * that chunk and checks it for integrity
 */
private void doAudits() {

 // If I host at least once chunk, and I know of more than
 // one peer (i.e. someone other than me)
 ;audit:if (chunkstable.size()>0 && alivePeers.size()>1) {

 /* Pick a random chunk with an alive peer. If after 10 tries it cannot
 * find such a chunk, then abort. */
 EternityPeer ep = null;
 EternityChunk ec = null;

 ;forLoop: for (int i=0; i<10; i++) {
 ec = getChunk(null);
 ep = alivePeersLookup(ec.getPartnerHost());
 if (ep==null) break forLoop;
 }
 if (ep==null) {
 return;
 }

 // Connect to the server, if unable, abort
 EternityServerInt esi = connectTo(ep);
 if (esi==null) {
 return;
 }

 // Make a request object for this chunk's partner
 long l = sr.nextLong();
 EternityAuditRequest ear = new EternityAuditRequest(IDno, l,
 ec.getPartnerHost(), ec.getDataHash(), ec.getPartner());

 SignedObject so = signObject(ear);

 ep.addOffered(ec.getCoin().getValue());
 writePeers();
 /* Audit is treated as a trade of same
 * value as the chunk being audited */

 // Send this chunk on and try to get a reply.
 SignedObject so2;
 try {
 so2 = esi.audit(so);
 }

 // Handle connection error
 catch (RemoteException re) {
 removeFromAlivePeers(ep);
 return;
 }

 // Handle Eternity error
 catch (EternityException ee) {
 String m = ee.getMessage();

Page 40 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

 if (m.equals("BadPartner") || m.equals("NoChunk")) {
 EternityAuditComplaint eac =
 new EternityAuditComplaint(IDno, sr.nextLong(), l,
 ec.getPartner(), ec.getPartnerDCHash(),
 ec.getChunkSig(),
 so, ee);
 addtoComplaints(eac);
 ep.addOffered(ec.getCoin().getValue());
 writePeers(); // Double the penalty paid for by ep
 }
 else {
 processException(ep, ee);
 }
 return;
 }

 // Extract a reply
 EternityAuditReply reply;
 try {
 reply = (EternityAuditReply) forceObject(so2);
 }
 catch (EternityException ee) {
 processException(ee);
 return;
 }

 // Check the hash of the reply, if good then credit it
 // with a successful 'trade'

 byte[] replyHash = makeHash (new Object[] { reply.getData() });

 if (Arrays.equals(replyHash, ec.getPartner()) &&
 Arrays.equals(reply.getDCHash(), ec.getPartnerDCHash())) {

 ep.addTraded(ec.getCoin().getValue());
 writePeers();
 }

 // Else create a complaint...
 else {
 EternityAuditComplaint eac = new EternityAuditComplaint(IDno,
 sr.nextLong(), l,
 ec.getPartner(), ec.getPartnerDCHash(),
 ec.getChunkSig(),
 so, so2);
 addtoComplaints(eac);
 ep.addOffered(ec.getCoin().getValue());
 writePeers(); // Double the penalty paid for by ep
 }
 }
}

CST Part II Project Page 41

Chris Applegate Eternity: Durable Distributed Storage

Appendix D: Package and Classes

EternityServer
EternityServerInt
The Eternity Server, and the RMI Interface it implements

EternityParameters
Used to hold private parameters (ID number, store size etc.) for a server

EternityClient
EternityClientGUI
Command-line and GUI implementations of the Eternity Client

DigitalCoin
Simple Digital Coin Implementation

EternityChunk
Data chunk with coin

EternityDataChunk
Data chunk with no coin

EternityLocator
List of a file’s chunks and (optionally) the decrypt key

EternityDownloadRequest
Sent by client to servers to download chunks

EternityException
Signed Exception for Eternity-specific errors

EternityObject
Base class for all objects sent between servers

EternityJoin
Used by server joining network for first time

EternityHello
Used by server reconnecting to network

EternityPeer
Record of node’s public key and rating

EternityAuditRequest
EternityAuditReply
Messages used in an audit

EternitySwapQuery
EternitySwapStart

Page 42 CST Part II Project

Eternity: Durable Distributed Storage Chris Applegate

EternitySwapReply
EternitySwapFinal
EternityPartnerUpdate
Messages used in a swap

EternityAuditComplaint
EternitySwapComplaint
Complaint objects

IDA
LUDecomposition
ModMatrix
Implementation of the Information Dispersal Algorithm, and supporting mathematical
tools

RMISSLClientSocketFactory
RMISSLServerSocketFactory
Custom socket creation classes for server and client

